ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ИНЖЕНЕРНО-ПРОИЗВОДСТВЕННАЯ ФИРМА "СИБНЕФТЕАВТОМАТИКА"

42 1894

Государственный реестр №19884-

СЧЕТЧИК ТЕПЛОВОЙ ЭНЕРГИИ СТС.М РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

324.00.00.000 РЭ

Настоящее руководство по эксплуатации распространяется на счетчик тепловой энергии СТС.М и содержит технические характеристики и указания, необходимые для правильной и безопасной его эксплуатации.

Руководство по эксплуатации состоит из следующих частей и разделов: 1.2 Технические характеристики 4

К эксплуатации и обслуживанию счетчика тепловой энергии СТС.М допускаются лица, имеющие группу допуска по электробезопасности не ниже третьей, знакомые с расходоизмерительной техникой и системами учета энергоресурсов и изучившие "Правила учёта тепловой энергии и теплоносителя", утвержденные Минтопэнерго 1995 г и настоящее руководство по эксплуатации.

Уровень квалификации - слесарь КИП и А не ниже пятого разряда.

Счетчик тепловой энергии СТС.М соответствует обязательным требованиям ТУ 4218-008-0148346-93 "Счетчики тепловой энергии СТС.М".

К настоящему документу приложен 324.00.00.000 МЧ "Счетчик тепловой энергии СТС.М. Монтажный чертеж".

1 Описание и работа изделия

1.1 Назначение изделия

- 1.1.1 Счетчик тепловой энергии СТС.М 324.00.00.000 (далее теплосчетчик) предназначен для измерений расхода и количества теплоносителя и количества тепловой энергии в водяных системах теплоснабжения с температурой воды до 150 °C и избыточным давлением до 1,6 МПа.
- 1.1.2 Область применения узлы коммерческого учёта тепловой энергии промышленных предприятий, предприятий жилищно-коммунального сектора, источники тепловой энергии.
- 1.1.3 Принцип работы теплосчетчика состоит в измерении параметров теплоносителя (расхода, температуры, избыточного давления) с помощью соответствующих измерительных преобразователей и последующего вычисления количества тепловой энергии (теплоты) и массы теплоносителя по определенному алгоритму, согласно "Правила учёта тепловой энергии и теплоносителя" и МИ 2412-97.

Расход и объем теплоносителя измеряется с помощью датчиков расхода счетчиков-расходомеров, построенных на вихревом или электромагнитном методах измерения.

Температура измеряется с помощью термопреобразователей сопротивления или датчиков температуры с унифицированным токовым сигналом 4-20 мA.

Давление измеряется с помощью измерительных преобразователей (датчиков) давления с унифицированным токовым сигналом 4-20 мА.

Сигналы с измерительных преобразователей о параметрах теплоносителя поступают на входы тепловычислителя, осуществляющего вычисление тепловой энергии в соответствии с установленным алгоритмом.

- 1.1.4 Теплосчетчик соответствует классу **B** по ГОСТ Р 51649-2000 и имеет две модификации по исполнению одноканальные (с одним измерительным каналом количества теплоты) и многоканальные (два или три измерительных канала количества теплоты) и типоразмеры в соответствии с типоразмерами датчиков расхода, входящих в состав теплосчетчика.
 - 1.1.5 В состав одноканального теплосчетчика (базовое исполнение) входят:
- два датчика расхода теплоносителя с пределами основной относительной погрешности не более $\pm 1,5$ %, в качестве которых используются или датчики расхода жидкости индукционные ДРЖИ счетчиков воды электромагнитных СВЭМ.М, или датчики расхода ДРС, ДРС.3(Л) счетчиков жидкости СЖУ, или датчики расхода ЭРИС.В(Л)Т расходомеров электромагнитных ЭРИС.В;
- тепловычислитель блок вычисления расхода микропроцессорный БВР.М (далее блок БВР.М) со встроенным программным обеспечением (ПО) по учету тепловой энергии и теплоносителя для водяных систем теплоснабжения;
 - два датчика температуры и два датчика избыточного давления.

В состав многоканального теплосчетчика (расширенное исполнение) входят:

- датчики расхода не менее 4 шт.;
- датчики температуры или термопреобразователи сопротивления типа TCM (TCП) не менее 4 шт.:
 - датчики избыточного давления не менее 2 шт.;
- тепловычислитель контроллер универсальный МИКОНТ-186 (далее контроллер МИКОНТ) со встроенным программным обеспечением по учету тепловой энергии и теплоносителя для водяных систем теплоснабжения.

Структура условного обозначения теплосчетчика приведена в приложении А.

- 1.1.6 Датчики расхода жидкости индукционные ДРЖИ, датчики расхода ДРС, ДРС.3 и датчики расхода ЭРИС.ВТ требуют остановку подачи измеряемой среды при техническом обслуживании и ремонте, а датчики расхода ЭРИС.ВЛТ и ДРС.ЗЛ позволяют проводить техническое обслуживание и ремонт без остановки подачи измеряемой среды.
- 1.1.7 Тепловычислители блок БВР.М и контроллер МИКОНТ обеспечивают настройку ПО в части привязки входных измерительных каналов к типоразмерам подключаемых датчиков (расхода, температуры, давления) на объекте эксплуатации, настройка производится с помощью встроенной клавиатуры по специальному паролю, защита ПО от преднамеренных и непреднамеренных изменений, влияющих на метрологические характеристики соответствует уровню "С" по МИ 3286-2010.

Общий вид теплосчетчика приведён в приложении Б.

- 1.1.8 Теплосчетчики обеспечивают выполнение следующих функций:
- измерение расхода теплоносителя в подающем и обратном трубопроводах;
- измерение температуры и давления теплоносителя;
- измерение времени наработки при включенном питании и индикацию часов реального времени;
 - измерение количества теплоты за любой промежуток времени;
- измерение объёма (массы) теплоносителя нарастающим итогом за любой промежуток времени;
- вычисление среднечасовых значений текущих параметров теплоносителя (давление, температура);
- отображение текущей информации о параметрах теплоносителя и информации о среднечасовых и итоговых параметрах на индикаторе дисплее тепловычислителя;
- передачу информации на верхний уровень при помощи стандартного интерфейса RS232 или RS485;
- регистрацию и хранение, за последние два месяца, информации об указанных параметрах теплоносителя и времени наработки теплосчетчика;
- запись сохраняемой информации по запросу оператора на внешнее устройство памяти (карта памяти типа MMC/SD, устройство USB);
 - самодиагностику и тестирование блоков и узлов входящих в состав теплосчетчика;
- сохранение информации о среднечасовых и итоговых параметрах при отключении питания.

1.2 Технические характеристики

- 1.2.1 Типоразмеры теплосчетчиков (базовое исполнение), диапазоны эксплуатационных расходов теплоносителя приведены в таблице 1.
- 1.2.2 Наименьшее значение разности температуры в подающем и обратном трубопроводах, $\Delta t_{\rm H}$, не менее 5 $^{\rm o}C$.
- 1.2.3 Пределы относительной погрешности теплосчетчика при измерении массы (объема) и массового (объемного) расхода ± 2.0 %.
- 1.2.4 Относительная погрешность измерения количества теплоты при рабочих условиях в процентах, не превышает \pm (3+4 Δ t_H/ Δ t+0,02 Q_{max}/Q).
- 1.2.5 Абсолютная погрешность измерения температуры не превышает ± 0.5 °C (при основной погрешности датчиков температуры ± 0.25 %).
- 1.2.6 Относительная погрешность измерения давления не превышает $\pm 2,0\%$ (при основной погрешности датчика давления не более $\pm 1,5\%$).
- 1.2.7 Основная относительная погрешность измерения времени наработки не превышает 0.1~%.

Таблица 1

Типоразмер тепло- счетчика	Типоразмер и модификация датчика расхода	Диаметр условного про- хода трубопро-	Диапазоны эксплуатаци- онных расходов теплоно- сителя, м ³ /ч			
		вода, мм	Q _{min}	Q _{max}		
CTC.M-25	ДРЖИ-25	25	0,2	8,0		
CTC.M -50	ДРЖИ-50	50	0,8	30,0		
CTC.M -50B	ДРС -25М	50	0,8	25,0		
CTC.M -80B	ДРС-100М	80	3,0	100,0		
CTC.M -100	ЭРИС.ВТ-100	100	5,0	200,0		
CTC.M -100B	ДРС-200М	100	5,0	200,0		
CTC.M-100B3	ДРС.3-100	100	10,0	200,0		
CTC.M -150	ЭРИС.ВТ-150	150	10,0	450,0		
CTC.M -150B	ДРС-500М	150	15,0	500,0		
CTC.M-150B3	ДРС.3-150	150	20,0	450,0		
СТС.М -200(Л)	ЭРИС.В(Л)Т-200	200	20,0	800,0		
СТС.М-200ВЗ(Л)	ДРС.3(Л)-200	200	40,0	800,0		
СТС.М -300(Л)	ЭРИС.В(Л)Т-300	300	30,0	1250,0		
СТС.М-300В3(Л)	ДРС.3(Л)-300	300	60,0	1250,0		
СТС.М -400(Л)	ЭРИС.В(Л)Т-400	400	50,0	2000,0		
СТС.М-400ВЗ(Л)	ДРС.3(Л)-400	400	100,0	2000,0		
СТС.М -500(Л)	ЭРИС.В(Л)Т-500	500	80,0	3125,0		
СТС.М-500ВЗ(Л)	ДРС.3(Л)-500	500	160,0	3125,0		
СТС.М -600(Л)	ЭРИС.В(Л)Т-600	600	100,0	4500,0		
СТС.М-600ВЗ(Л)	ДРС.3(Л)-600	600	200,0	4500,0		
СТС.М -700(Л)	ЭРИС.В(Л)Т-700	700	150,0	6125,0		
СТС.М-700ВЗ(Л)	ДРС.3(Л)-700	700	300,0	6125,0		
СТС.М -800(Л)	ЭРИС.В(Л)Т-800	800	200,0	8000,0		
СТС.М-800ВЗ(Л)	ДРС.3(Л)-800	800	400,0	8000,0		
СТС.М -1000(Л)	ЭРИС.В(Л)Т-1000	1000	300,0	12500,0		
СТС.М-1000ВЗ(Л)	ДРС.3(Л)-1000	1000	600,0	12500,0		

- $1.2.8~\Pi$ итание теплосчетчика от сети переменного тока частотой (50 \pm 1) Γ ц и напряжением (220 \pm 22) B.
- 1.2.9 Мощность потребляемая теплосчетчиком при максимальном количестве подключенных датчиков не превышает $50~\mathrm{B\cdot A}.$
- 1.2.10 Длина линии связи между тепловычислителем и датчиками расхода, давления, температуры не более 200 м.
- 1.2.11 Габаритные размеры и масса датчиков, тепловычислителя указаны в эксплуатационной документации на них.

 - 1.2.14 Средний срок службы теплосчетчика не менее 12 лет.

1.3 Состав изделия

1.3.1 Состав теплосчетчика приведён в таблице 2.

Таблица 2

Обозначение	Наименование	Кол.	Примечание
311.03.00.000-02	Блок вычисления расхода микро- процессорный БВР.М	1	Одноканальный
или 366.00.00.000	Контроллер универсальный МИКОНТ-186	1	Многоканальный
314.01.00.000 и(или)	Датчик расхода ЭРИС.ВТ	2	В соответствии с заказом
230.01.00.000-02 и(или)	Датчик расхода ЭРИС.ВЛТ	2	В соответствии с заказом
333.01.00.000	Датчик расхода жидкости индукци- онный ДРЖИ	2	В соответствии с заказом
345.01.00.000 и(или)	Датчик расхода ДРС	2	В соответствии с заказом
345.02.00.000 и(или)	Датчик расхода ДРС.3	2	В соответствии с заказом
345.03.00.000	Датчик расхода ДРС.ЗЛ	2	В соответствии с заказом
	Датчик температуры с унифицированным выходным сигналом 4-20 мА, диапазон температур <u>0 - 150</u> °C	2	
	Термопреобразователи сопротивления типа ТСМ (ТСП)	2	Многоканальный
	Датчик давления с унифицированным выходным сигналом 4-20 мА	2	Верхний предел в соответствии с заказом

1.4 Устройство и работа

- 1.4.1 Работа теплосчетчика в режиме измерения тепловой энергии основана на определении расхода тепловой энергии в соответствии с документом "Правила учёта тепловой энергии и теплоносителя", утвержденным Минтопэнерго РФ 12.08.95.
- 1.4.2 Датчики расхода обеспечивают линейное преобразование объёмного расхода теплоносителя в электрический частотный сигнал ЭРИС.В(Л)Т, ДРС.З(Л) или электрический импульсный сигнал (с нормированной ценой импульсов) ДРЖИ, ДРС.
- 1.4.3 Определение количества теплоты Q, в Гкал, в тепловычислителе реализовано по алгоритмам вычисления для закрытых и открытых систем теплопотребления.
 - 1.4.3.1 Для закрытых систем количества теплоты определяется по формуле

$$Q = V_1 \cdot \rho_1 \cdot (h_1 - h_2), \tag{1}$$

где V_1 - объём теплоносителя по подающему трубопроводу, м³;

 ρ_1 - плотность теплоносителя, кг/м³;

h₁ - энтальпия теплоносителя в подающем трубопроводе, кДж/кг;

h₂ - энтальпия теплоносителя в обратном трубопроводе, кДж/кг.

- 1.4.3.2 Для открытых систем количества теплоты определяется:
- а) без датчиков расхода в линиях горячего водоснабжения и подпитке по формуле

$$Q = V_1 \cdot \rho_1 \cdot (h_1 - h_2) + (V_1 \cdot \rho_1 - V_2 \cdot \rho_2) \cdot (h_2 - h_{xB}), \tag{2}$$

б) при установке датчика расхода в линию подпитки по формуле

$$Q=V_{1}\cdot\rho_{1}\cdot(h_{1}-h_{2})+(V_{1}\cdot\rho_{1}-V_{2}\cdot\rho_{2}+V_{\Pi}\cdot\rho_{2})\cdot(h_{2}-h_{X,B}),$$
(3)

в) с датчиками расхода в линиях подпитки и горячего водоснабжения по формуле

$$Q = V_1 \cdot \rho_1 \cdot (h_1 - h_2) + (V_{\Gamma.B.} \cdot \rho_2 + V_{\Pi} \cdot \rho_2) \cdot (h_2 - h_{X.B.}), \tag{4}$$

где V_2 - объём теплоносителя по обратному трубопроводу, м³;

 $V_{\text{г.в.}}$ и $V_{\text{п}}$ - объёмы воды, израсходованные соответственно на горячее водоснабжения и на подпитку системы отопления, м 3 ;

 $h_{x.в.}\,$ - энтальпия холодной воды, используемой для подпитки, кДж/кг.

Значения энтальпии и плотности, как функция f(t, P), определяются тепловычислителем автоматически по измеренным значениям температуры t и давления P теплоносителя.

- 1.4.4 Контроль текущих значений расхода теплоносителя, температуры, давления, среднечасовых значений, интегральных значений (объём, масса, количество теплоты) нарастающим итогом за любой промежуток времени отображается на встроенном дисплее тепловычислителя по запросу оператора.
- 1.4.5 Питание датчиков (расхода, температуры, давления) осуществляется от тепловычислителя.
- 1.4.6 Схемы соединений и подключения тепловычислителя и датчиков указаны в приложении В.
- 1.4.7 Подробное описание устройства, принципа и порядка работы тепловычислителя и датчиков расхода теплоносителя приведены в эксплуатационной документации на них.

1.5 Маркировка и пломбирование

- 1.5.1 Обозначение типоразмеров датчиков расхода ЭРИС.В(Л)Т, ДРЖИ, ДРС, ДРС.З(Л), год выпуска, обозначение технических условий указано на табличках прикрепленных к корпусу датчика расхода.
- 1.5.2 Места пломбирования датчиков расхода, температуры, давления, тепловычислителя указаны на монтажном чертеже 324.00.00.000 МЧ.
 - 1.5.3 На тепловычислителе нанесены следующие данные:
 - условное обозначение;
 - знак утверждения типа средств измерений по ПР 50.2.107-09;
 - наименование и товарный знак предприятия изготовителя;
 - обозначение технических условий;
 - дата изготовления;
 - степень защиты от воздействия пыли и воды IP40 по ГОСТ 14254-96;
- надпись "ВНИМАНИЕ: ПОДКЛЮЧАЕМОЕ ОБОРУДОВАНИЕ ДОЛЖНО БЫТЬ ОБЕСТОЧЕНО!".
- 1.5.4 На транспортной таре нанесены несмываемой краской основные (наименование грузополучателя и пункта назначения при необходимости), дополнительные (наименование грузоотправителя, условное обозначение изделия) и информационные (масса брутто и нетто) надписи, а также манипуляционные знаки, соответствующие надписям: "Хрупкое. Осторожно", "Беречь от влаги", "Верх" по ГОСТ 14192-96.

1.6 Упаковка

- 1.6.1 Теплосчетчик упакован в деревянный ящик типа III-1 по ГОСТ 2991-85, выложенный двумя слоями бумаги парафинированной БП-3-35 по ГОСТ 9569-2006 в соответствии с ТУ 4218-008-0148346-93.
- 1.6.2 В каждый ящик вкладывается упаковочный лист, содержащий следующие сведения:
 - наименование и обозначение поставляемого изделия;
 - подпись ответственного лица и штамп ОТК предприятия-изготовителя;
 - дату упаковывания.
- 1.6.3 Упаковка теплосчетчика исключает возможность перемещения изделия внутри ящика.
- 1.6.4 При отгрузке самовывозом допускается отсутствие транспортной тары, при этом вид упаковки согласовывается с заказчиком.

2 Использование по назначению

2.1 Эксплуатационные ограничения

- 2.1.1 Датчики расхода, температуры и давления допускают эксплуатацию при температуре окружающего воздуха от минус 40 до плюс 50 °C и влажности до 95 % при 35 °C. Устанавливаются на открытом воздухе, под навесом или в помещении.
- 2.1.2 Тепловычислитель устанавливается в отапливаемом помещении и эксплуатируется при температуре окружающего воздуха от 5 до 50 °C и влажности до 80 % при температуре 35 °C.

- 2.1.3 Уровни вибрации в месте установки составных частей не должны превышать 0.35 мм при частоте до 55 Γ ц, для тепловычислителя вибрации не допускаются.
- 2.1.4 ЗАПРЕЩАЕТСЯ ИСПОЛЬЗОВАТЬ ДАТЧИКИ РАСХОДА В КАЧЕСТВЕ МОНТАЖНЫХ ВСТАВОК ПРИ ВЫПОЛНЕНИИ СВАРОЧНЫХ РАБОТ НА ТРУБОПРОВОДЕ.
 - 2.2 Подготовка изделий к использованию
- 2.2.1 После транспортирования при отрицательных температурах перед распаковыванием необходима выдержка теплосчетчика в упаковке в нормальных условиях в течение одного часа.
- 2.2.2 После выполнения монтажных работ в соответствии с монтажным чертежом 324.00.00.000 МЧ и схемой соединений и подключений (приложение В) теплосчетчик готов к работе.

2.3 Использование изделия

- 2.3.1 После запуска в работу теплосчетчика необходимо проверить:
- соответствие типоразмеров и диапазона выходных сигналов датчиков с параметрами, введенными в тепловычислитель;
- наличие выходных сигналов с датчиков по показаниям тепловычислителя, величину питающего напряжения;
- выполнение функций тепловычислителя по вычислению массового (объемного) расхода, количества теплоты, счёта времени, ведение календаря (при необходимости ввести корректировку реального времени) в соответствии с руководством по эксплуатации на тепловычислитель.
- 2.3.2 Смена режимов визуализации показаний тепловычислителя осуществляется при помощи встроенной клавиатуры.
- 2.3.3 При соответствии "паспортных" типов датчиков по каналам "расход", "температура", "давление", введенных в тепловычислителе фактическим, и соответствии технологической схемы теплоснабжения варианту системы учета тепла, настроенной в тепловычислителе счетчик СТС.М считается готовым к эксплуатации.
- 2.3.4 В случае несоответствия в настройки тепловычислителя вносятся коррективы, посредством ввода "пароля" могут быть изменены:
 - диапазон датчиков расхода;
 - диапазон датчиков температуры;
 - диапазон датчиков давления.

В этом случае повторная поверка тепловычислителя не требуется.

- 2.3.5 После выполнения операций по пп. 2.3.1-2.3.4 представителем завода-изготовителя, либо представителем организации, осуществляющей сервисное обслуживание или представителем "Поставщика" пломбируются места согласно монтажного чертежа 324.00.00.000 МЧ.
- 2.3.6 В процессе эксплуатации может быть осуществлена (с любой периодичностью) регистрация (запись) информации на внешнее устройство памяти (карта памяти типа MMC/SD, устройство USB).
- 2.3.7 Информация с устройства памяти может быть считана и переведена на бумажный носитель в формах, представленных в приложении Γ при помощи компьютера.
- 2.3.8 При работе теплосчетчика в составе локальных информационноизмерительных систем информация может непрерывно передаваться на верхний уровень при помощи стандартного выхода (интерфейса) RS232 или RS485.

3 Поверка

3.1 Поверка теплосчетчиков осуществляется в соответствии с документом по поверке 324.00.00.000 МИ «Инструкция. ГСИ. Счетчики тепловой энергии СТС.М. Методика поверки», утвержденным ГЦИ СИ ФГУ "Тюменский ЦСМ" в 2011 г.

Межповерочный интервал - три года.

4 Техническое обслуживание, текущий ремонт

4.1 Теплосчетчик не требует постоянного технического обслуживания. Обслуживание, при соблюдении условий эксплуатации, носит периодический характер не реже одного раза в год.

Периодическое обслуживание заключается в проверке технического состояния составных частей теплосчетчика в соответствии с требованиями эксплуатационной документации на них.

- 4.2 Ремонт теплосчетчика производится только на предприятии-изготовителе или в специализированных мастерских, либо в организациях осуществляющих сервисное обслуживание и имеющих разрешение (лицензию) на данный вид работ.
- 4.3 В процессе эксплуатации, в т.ч. и после ремонта, проводится периодическая поверка теплосчетчика в соответствии с разделом 3 настоящего документа.

5 Хранение

5.1 Теплосчетчик должен храниться на стеллажах в упакованном виде в сухом отапливаемом помещении при температуре окружающего воздуха от плюс 5 до плюс 40 °C и относительной влажности до 80 % при температуре 25 °C. Воздух помещения не должен иметь примесей агрессивных газов и паров.

Группа условий хранения 1(Л) по ГОСТ 15150-69.

6 Транспортирование

6.1 Транспортирование теплосчетчика должно производиться в упакованном виде в контейнерах, закрытых железнодорожных вагонах, в трюмах речных и морских судов и автомобильным транспортном с защитой от атмосферных осадков.

При погрузке и выгрузке необходимо соблюдать требования, оговоренные предупредительными знаками на таре.

6.2 Условие транспортирования теплосчетчика - по группе 3 (ЖЗ) ГОСТ 15150-69.

ПРИЛОЖЕНИЕ А (обязательное)

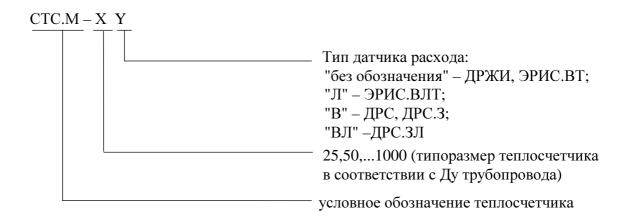


Рисунок А.1 – Структура условного обозначения одноканального теплосчетчика

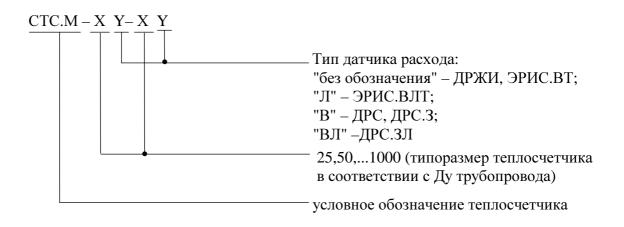
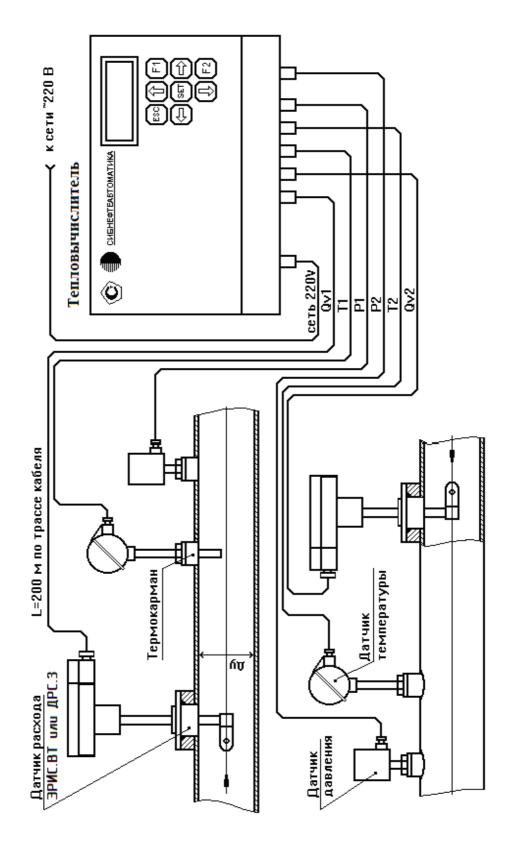



Рисунок А.2 – Структура условного обозначения многоканального теплосчетчика

ПРИЛОЖЕНИЕ Б

(обязательное)

Рисунок Б.1 – Счетчик тепловой энергии СТС.М. Общий вид

ПРОДОЛЖЕНИЕ ПРИЛОЖЕНИЯ Б (обязательное)

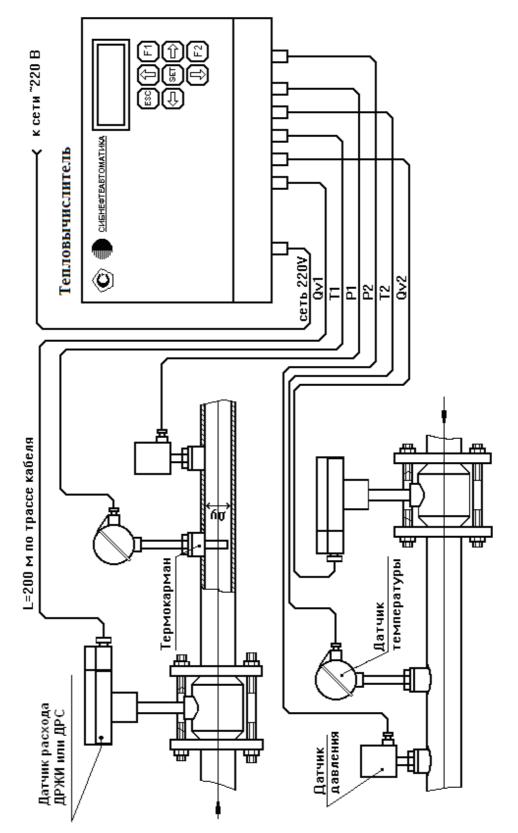


Рисунок Б.2 – Счетчик тепловой энергии СТС.М. Общий вид

Рисунок Б.3 – Счётчик тепловой энергии СТС.М. Общий вид

≺ ксети "220В CHEHENTEABTOMATHICA Тепловычислитель ПРОДОЛЖЕНИЕ ПРИЛОЖЕНИЯ Б сеть 220У 0 Q\2 잓 P2 ⊏ Ы (обязательное) Термокарман Датчик температуры Датчик расахода ЭРИС.ВЛТ или ДРС.ЗЛ Кран шаровой Датчик давления

14

ПРИЛОЖЕНИЕ В (обязательное)

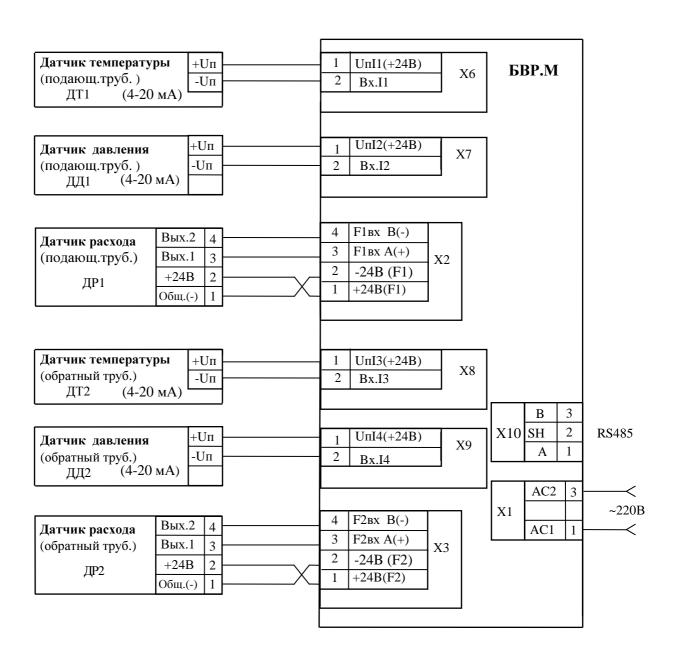


Рисунок В.1 - Счетчик тепловой энергии СТС.М (с блоком БВР.М). Схема соединений и подключения

ПРОДОЛЖЕНИЕ ПРИЛОЖЕНИЯ В (обязательное)

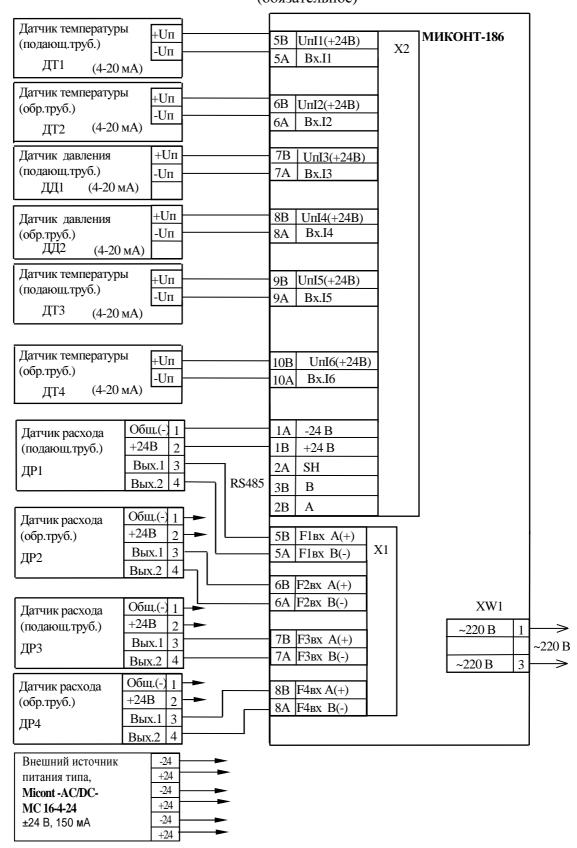


Рисунок В.2 - Счетчик тепловой энергии СТС.М (с контроллером МИКОНТ-186). Схема соединений и подключения

ПРИЛОЖЕНИЕ Г (справочное)

Таблица Г.1 - Отчет о потреблении тепла

Время снятия показаний	Время, час	Темп.1, °С	Темп.2, °С	Macca1,	Macca2,	Тепло, Гкал	Потери, т

324,00,00,00,MY

Таблица 1	Τá	аблиц	a	1
-----------	----	-------	---	---

Типоразмер	Обозначение	Рис.	Dy, мм	Диапазон контролируемых расходов теплоносителя, м ³ /ч	D, мм	Ѕ, мм
CTC M-25	324.00.00.000-18	1,4,5	25	0,28,0	33,5	3,2
CTC.M-50	-19	1,4,5	50	0,830	57	4
CTC.M-100	-20		100	5200	108	5
CTC.M-150	-21		150	10450	159	8
CTC.M-200	-22		200	20800	219	10
CTC.M-300	-23		300	301250	325	10
CTC.M-400	-24	2 4 5	400	502000	426	10
CTC.M-500	-25	2,4,5	500	803125	530	10
CTC.M-600	-26		600	1004500	630	10
CTC.M-700	-27		700	1506125	720	10
CTC.M-800	-28		800	2008000	820	10
CTC.M-1000	-29		1000	30012500	1020	10
СТС.М-400Л	-30		400	502000	426	10
СТС.М-500Л	-31		500	803125	530	10
СТС.М-600Л	-32	ا م د ا	600	1004500	630	10
СТС.М-700Л	-33	3,4,5	700	1506125	720	10
СТС.М-800Л	-34		800	2008000	820	10
СТС.М-1000Л	-35		1000	30012500	1020	10
CTC.M-50B	-36		50	0,825	57	4
CTC.M-80B	-37	4 5 6	80	3100	89	5
CTC.M-100B	-38	4,5,6	100	5200	108	5
CTC.M-150B	-39		150	15500	159	5
CTC.M-100B3	-40	4,5,7	100	10200	108	5
CTC.M-150B3	-41		150	20450	159	8
CTC.M-200B3	-42		200	40800	219	10
CTC.M-300B3	-43		300	601250	325	10
CTC.M-400B3	-44		400	1002000	426	10
CTC.M-500B3	-45	4,5,8	500	1603125	530	10
CTC.M-600B3	-46		600	2004500	630	10
CTC.M-700B3	-47		700	3006125	720	10
CTC.M-800B3	-48		800	4008000	820	10
CTC.M-1000B3	-49		1000	60012500	1020	10
СТС.М-200ВЗЛ	-50		200	40800	219	10
СТС.М-300ВЗЛ	-51		300	601250	325	10
СТС.М-400ВЗЛ	-52		400	1002000	426	10
СТС.М-500ВЗЛ	-53	ا ا	500	1603125	530	10
СТС.М-600ВЗЛ	-54	4,5,9	600	2004500	630	10
СТС.М-700ВЗЛ	-55		700	3006125	720	10
СТС.М-800ВЗЛ	-56		800	4008000	820	10
СТС.М-1000ВЗЛ	-57		1000	60012500	1020	10
СТС.М-200Л	-58	2.4.5	200	20800	219	10
СТС.М-300Л	-59	3,4,5	300	301250	325	10

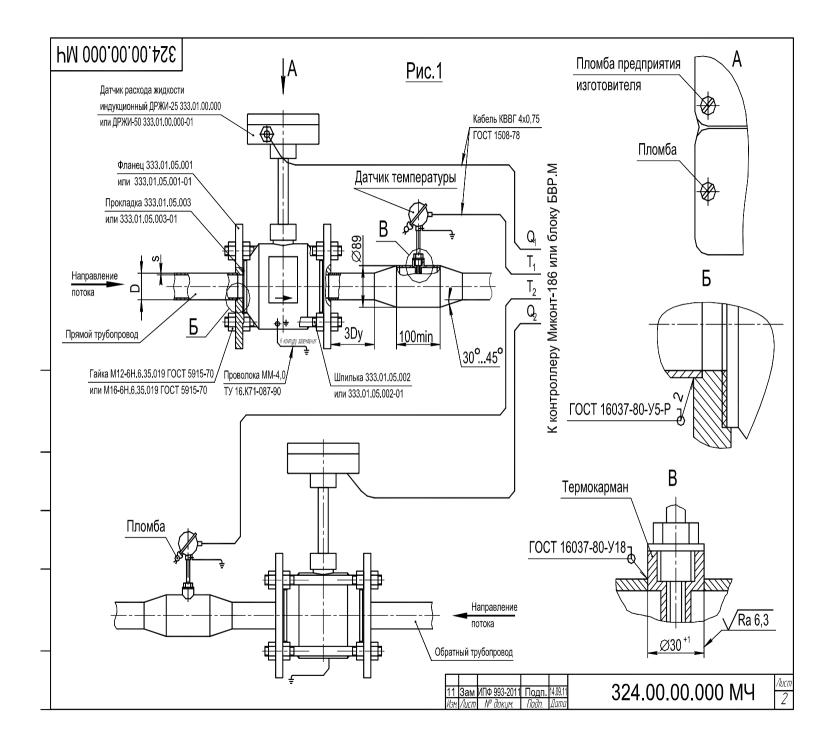
Технические требования

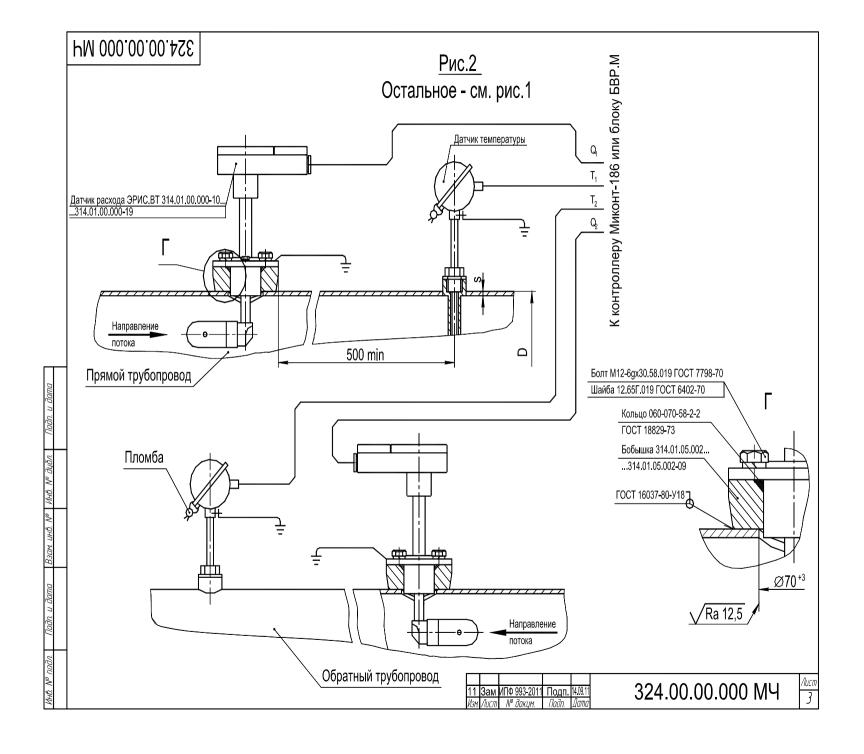
- 1.* Размеры для справок.
- 2. Перед установкой датчиков температуры полость термокарманов заполнить маслом Т-750 ГОСТ 982-80.
- 3. Допускается установка датчиков температуры на других элементах трубопровода (колено, тройник), в т.ч. на прямом участке трубопровода перед датчиком расхода 5. Наименьшее значение разности температуры в подающем и на расстоянии не менее 800 мм до датчика расхода.
- 4. Электромонтаж выполнить согласно 324.00.00.000 РЭ.
- Припой ПОС 61 ГОСТ 21930-76.
- 6. Кабель КВВГ, проволока ММ-4 с изделием не поставляются. 7. Относительная погрешность измерения количества
- 7. После монтажа на блоке БВР.М, контроллере Миконт-186, датчиках температуры, расхода устанавливаются пломбы.
- 8. **Установка датчика температуры счетчика СТС.М-50В согласно рис.1

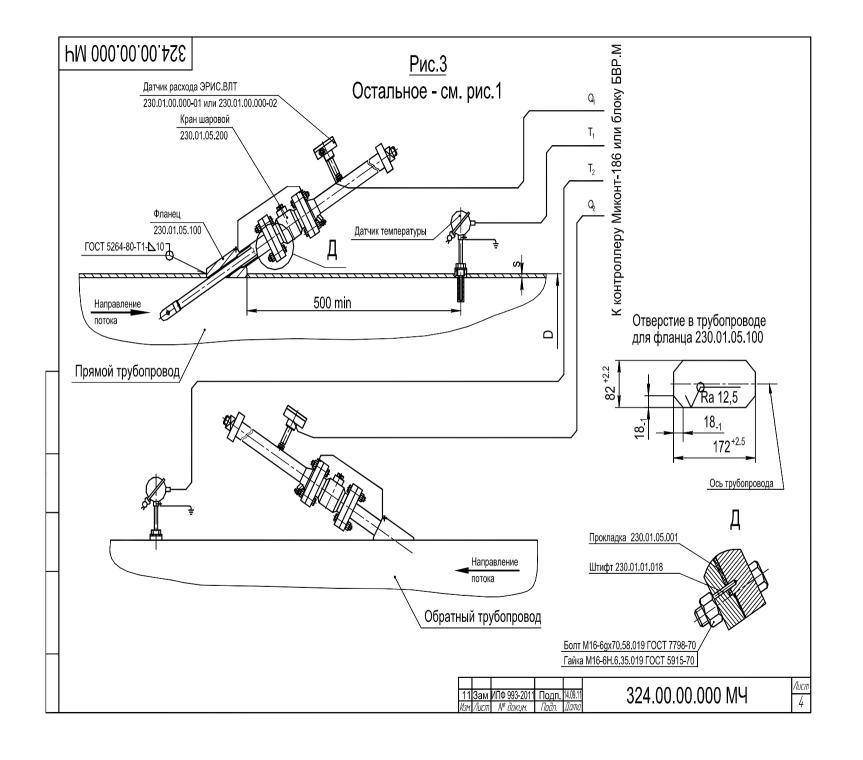
Таблица 2

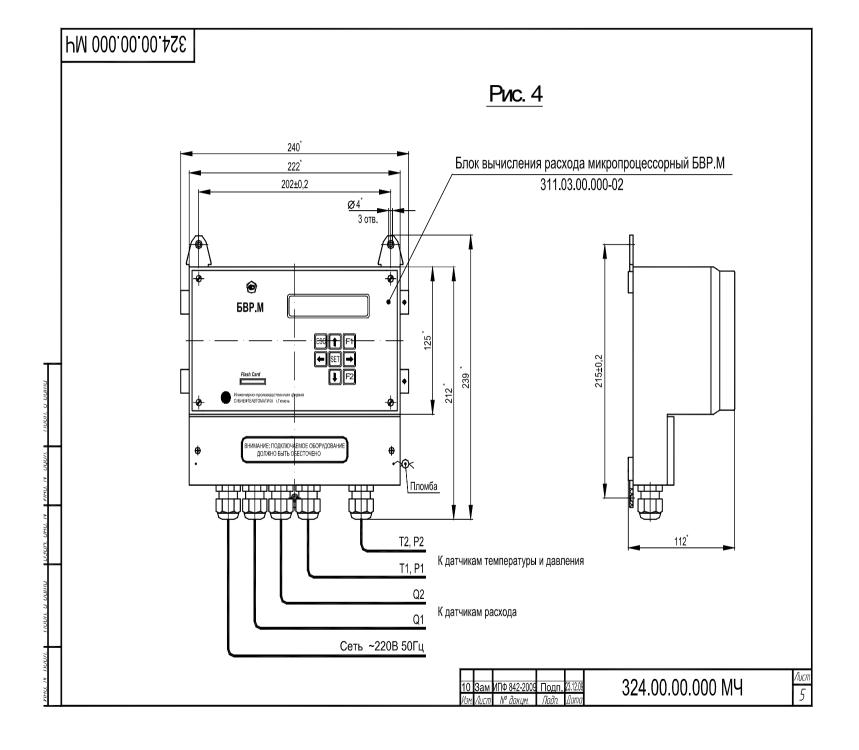
Наименование местного сопротивления перед датчиком расхода	Длина прямолинейного участка, выраженная в диаметрах трубопровода				
Колено или грязевик	20 Dy				
Два колена в одной плоскости	30 Dy				
Два колена в разных плоскостях или тройник	50 Dy				
Конфузор	15 Dy				
Диффузор	25 Dy				
Полностью открытые: клапан, задвижка	15 Dy				

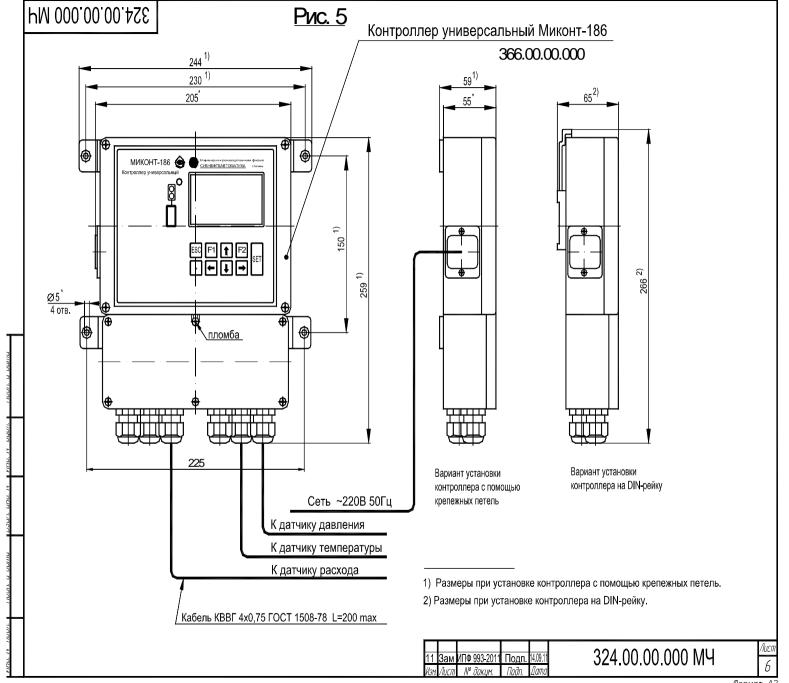
Техническая характеристика


- 1. Диаметр условного прохода Dy см таблицу 1 2. Диапазон контролитуемых расходов теплоносителя см. таблицу 1
- 3. Давление условное, МПа 1,6
- 4. Температура теплоносителя, °С 0...150
- обратном трубопроводах, ∆tн, °С, не менее 6. Пределы относительной погрешности теплосчетчика при
- измерении массы (объема) и массового (объемного) расхода, % ±2,0
- теплоты при рабочих условиях в процентах, не $\pm (3+4\Delta t + \Delta t + 0.02 Q max/Q)$ превышает
- 8. Питание от сети переменного тока с параметрами: номинальное напряжение, В 220±22 частота. Гц 50±1
- 9. Потребляемая мощность счетчиком СТС.М, В.А, не более: 50 10. Длина линии связи между датчиками и блоком БВР.М, или контроллером Миконт-186 м, не более 200
- 11. Длина прямолинейных участков трубопровода до датчика расхода: для СТС.М-25, СТС.М-50, СТС.М-50В,


CTC.M-80B, CTC.M-100B, CTC,M-150B 5D_V для остальных типоразмеров см. таблицу 2


после датчика расхода: для CTC.M-25, CTC.M-50, CTC.M-50B


см. рис. 1 CTC.M-80B, CTC.M-100B, CTC.M-150B 5Dv для остальных типоразмеров


					324.00.00.000 MY						
11	Зам	ИПФ 993-2011			0	Λl	lM.	Масса	Масштаδ		
Изм.	/lucm			Дата	Счетчик тепловой						
	puo.	Артамойов	Подп.	14.09.11	энергии СТС.М		1	_	-		
Про	в.	Вашурин	Подп.	14.09.11	Монтажный чертеж	Ш					
T.KL	энтр.				монтажный чертеж	Nuc	. <i>M</i>	1 Лист	rob 10		
							1	ОАО ИП	Φ		
Н.кс	энтр.	Голубева	Подп.	14.09.11		رے" ا	_		•		
Уml	g	Зимин	Подп.	14.09.11		LU	OHEG	ртеавто	Mamuka		

